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Abstract: The objective of the present study was to predict
the inactivation trends of acid-adapted foodborne patho-
gens in tomato juice by ohmic heating through a numerical
analysis method. The mathematical model based on finite
element method (FEM) was used to simulate the multi-
physics phenomena including electric heating, heat
transfer, fluid dynamics, and pathogen inactivation. A cold
spot was observed in the corner part of the ohmic heating
chamber, where some pathogens survived even though all
pathogens were inactivated elsewhere. Challenges of this
study were how to reflect the increased resistance of
pathogen by acid-adaptation. After simulation, we verified
that inactivation level of acid-adapted foodborne patho-
gens by 25 Vrms/cm ohmic heating (1 kHz), predicted with
the developed mathematical model, had no significant
differences with experimental results (p > 0.05). Therefore,
the mathematical approaches described in the present
study will help juice processors determine the processing
conditions necessary to ensure microbial safety at the cold
point of a rectangular type batch ohmic heater.

Keywords: acid-adaptation; foodborne pathogen; mathe-
matical modeling; ohmic heating; tomato juice.

1 Introduction

As minimal processing has been spotlighted in recent years
to preserve food quality, food processing technology
continuously advances to ensure safety with the least
treatment. In this regard, novel thermal and non-thermal
technologies have been introduced, whichminimize quality
degradation. Ohmic heating is thermal technology ensuring
relatively uniform and rapid heating by means of electric
current through food samples with lower capital cost
compared to industrial microwave and radio frequency
heating [1]. Even though several factors affect the perfor-
mance of ohmic heating, it has been reported that food
quality can be improved by ohmic rather than conventional
heating [2, 3]. Foodborne pathogens would be inactivated
rapidly with ohmic heating by means of the rapid and uni-
form heating, and also non-thermal bactericidal effect
would accelerate the pathogen inactivation efficacy [4].

Predictingmicrobial destruction in thermal processing
of foods has been a topic of intense investigation. The
resistance of each pathogen to different lethal tempera-
tures should be identified to predict the microbial
destruction by thermal processing. Because most micro-
organisms are known to be destructed exponentially at
lethal temperature, D-value, the time required to reduce the
population of a microbe by 90% at isothermal heating
conditions, is widely used as an indicator of thermal
resistance of pathogens. D-values are usually calculated
empirically because the values differ significantly accord-
ing to the type of pathogen, nutritional components, pH,
and viscosity of food samples [5, 6]. After D-values at
various temperatures are determined, z-value, another
heat resistance indicator, is calculated from the D-values.
Subsequently, lethality (F value) is determined from the
heating rate, thermal history, and the z-value to predict
microbial destruction in thermal processing. These D- and
z-values also can be obtained from iterative calculation.
Several researchers recently insisted that microbial
destruction (log reduction) doesn’t follow a linear rela-
tionship with temperature [7, 8]. Several non-log-linear
models such as Weibull and log-linear + shoulder model
have been proposed, and predictivemodeling based on the
non-log-linear models has been reported [9].
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Empirical modeling has long been used not only to
predict pathogen inactivation but also to optimize food
processing. For example, response surfacemethodologyhas
been used to optimize treatment conditions in food pro-
cessing [10, 11]. However, empirical modeling provides no
insight into the underlying mechanisms and is unrelated to
the physics-basedmodel, and accordinglymodeling of food
processing has undergone a significant shift from empirical
to a physics-based modeling approach [12]. Physics-based
modeling including computational simulation enables food
engineers to predict precisely temperature distribution and
microbial destruction at a specific point in time. Food pro-
cessing by novel thermal treatments has been of interest,
and several researchers analyzed the temperature distribu-
tion and microbial inactivation of novel thermal technolo-
gies such as microwave, radio-frequency [13–15] including
our previous research on ohmic heating [16]. Our previous
research [16] focused on the simulation of inactivation of
Escherichia coli O157:H7 in various amount of orange juice,
whereas this study investigated the mathematical modeling
of acid-adapted foodborne pathogens in tomato juice.
Various software can be used for mathematical modeling
such as ANSYS [17–19] and COMSOL [20], and COMSOL
software was used in this study.

Tomato-based foods suchas tomato juice, tomatopaste,
and salsa can be processed effectively by ohmic heating
because of relatively high electrical conductivity [21]. For
example, Palaniappan and Sastry [22] reported that elec-
trical conductivities of tomato juice were ranged ca. 0.5–
1.7 S/m, which are proportion to the temperature. Even
though juice has traditionally been regarded as safe because
of its acidity, several outbreaks have been reported in fruit
juices [23, 24]. Foodborne pathogens such as E. coliO157:H7,
Salmonella enterica serovar Typhimurium, and Listeria
monocytogenes are one of causing agents of the outbreaks,
which are known to be adapt to acidic conditions [25]. Heat
resistance of these pathogens increased by acid-adaptation,
which induces cross-protection against thermal treatments
[26, 27]. In this regard, precise prediction of temperature
distribution and acid-adapted pathogen inactivation of to-
mato juice processing by ohmic heating is of importance for
processing optimization. Eliminating acid-adapted patho-
gens during juice processing is very important because they
can survive longer than non-acid-adapted pathogens.
However, inactivation of acid-adapted pathogens in tomato
juice hasnot yet beenanalyzedby thenumerical simulation,
and challenges of this study was how to reflect the increase
resistance of pathogen by acid-adaptation.

The objective of the present study was to predict tem-
perature distribution of tomato juice, inactivation trend of
acid-adapted foodborne pathogens by ohmic heating using
physic-based modeling. High frequency and pulse

waveform was used to reduce electrode corrosion rate [28]
because electrode corrosion, occur during ohmic heating
processing, can be accelerated in acidic food. Significant
electrode corrosion would be observed if sine waveform
with low frequency was used. Predicted values by simu-
lation was compared with experimental results for vali-
dation as previous studies was conducted [29–31].

2 Materials and methods

2.1 Model parameters

The material properties of tomato juice are essential in modeling the
ohmic heating. Tomato juice (pH 3.6, 11.8°Brix), used in this study, is
composed of water (88.7%), protein (0.5%), fat (0.3%), and carbohy-
drates (10.5%). The following equations were utilized to predict the
density (ρ, kg/m3), specific heat (Cp, J/kg·K), and thermal conductivity
(K, W/m·K) of tomato juice [32];

ρ � ∑
n

i�1
ρiXi (1)

Cp � ∑
n

i�1
CpiXi (2)

K � ∑
n

i�1
KiYi (3)

where ρi, Cpi, and Ki are the density, specific heat, and thermal con-
ductivity of the ith component, respectively, in which a food material
has n components, and Xi is the weight fraction. Yi is the volume
fraction of the ith component, obtained as follows;

Yi � Xi/ρi
∑n

i�1(Xi/ρi) (4)

The electrode and surrounding materials were made of titanium
andacrylic plastic, respectively. Thematerial properties of tomato juice,
titaniumelectrodes, and the acrylic plastic treatment chamber are listed
in Table 1. Properties of tomato juice dependent on temperature were
used to reflect real situation. The electrical conductivity of tomato juice
is identified by voltage and current data [33], and calculated as follows;

σ � LI
AV

(5)

where σ is the electrical conductivity (S/m), L is the distance between
electrodes (m), I is the current (A), A is the cross-sectional area of the
electrode (m2), and V is the voltage (V).

Voltage, current, and temperature were measured using voltage
probe (TPP0101, Tektronix Corp., USA), current clamp (i30s, Fluke,
USA) and K-type thermocouples, respectively. Electrical conductivity
(mean of three replication)was analyzedwith linear expression because
it had a linear relationship with temperature (R2 > 0.999, Figure S1).

2.2 Cell suspension preparation and inoculation

E. coli O157:H7 and Salmonella, two most causative pathogens in United
States, and L. monocytogenes, causing premature, miscarriage, and
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stillbirth, were used in this study. Three strains each of E.O157:H7 (ATCC
43890,ATCC35150, andATCC43889),S. typhimurium (ATCC 19585,ATCC
43971, and DT 104), and L. monocytogenes (ATCC 19111, ATCC 19115, and
ATCC 15313) were obtained from the bacterial culture collection of the
School of Food Science, Seoul National University (Seoul, Republic of
Korea). A single colony from a frozen stock was cultivated on tryptic soy
agar (TSA;Difco, Becton,Dickinson, Sparks,MD), inoculated into 5mLof
tryptic soy broth (TSB; Difco, Becton, Dickinson, Sparks, MD), incubated
at 37 °C for 24 h, collected by centrifugation at 4,000×g for 20min at 4 °C,
and washed with 0.2% peptone water (PW; Bacto, Becton, Dickinson,
Sparks, MD). The supernatant was decanted, and the final pellets were
resuspended in 0.2% PW. Afterward, suspended pellets of the three
pathogen strains were combined to comprise a mixed culture cocktail
containing approximately equal numbers of cells of each strain of E. coli
O157:H7 (ca. 108 colony forming unit (CFU)/mL), S. typhimurium (ca.
107 CFU/mL), andL.monocytogenes (ca. 107 CFU/mL). Pasteurized tomato
juicewaspurchased froma local grocery store (Seoul, Republic ofKorea),
stored at room temperature (22 ± 1 °C). After opening, tomato juice was
stored at refrigerated temperature (4 °C) with cap, and used within two
weeks. The mixed-strain cocktail (0.2 mL) was inoculated into 50 mL
samples of processed Tomato juice before treatment. Acid-adapted cul-
tures were grown in TSB adjusted to pH 5 with 1 N hydrochloric acid
(HCl), and prepared in the same way described above.

2.3 Microbial enumeration

Formicrobial enumeration, each treated 50mLsamplewas immediately
transferred into a sterile stomacher bag (Labplas, Inc., Sainte-Julie,
Quebec, Canada) containing 100 mL of sterile 0.2% PW and homoge-
nized for 2 min using a stomacher (Easy Mix; AES Chemunex, Rennes,
France). After homogenization, 1 mL samples were 10-fold serially
diluted with 9 mL of sterile 0.2% PW, and 0.1 mL of stomached samples
or diluents were spread plated onto each selective medium. Sorbitol
MacConkey (SMAC) agar (Difco), xylose lysine deoxycholate (XLD) agar
(Difco), and Oxford agar base (OAB; Difco) with antimicrobial supple-
ment (Bacto Oxford antimicrobial supplement; Difco) were used as se-
lective media for enumeration of E. coli O157:H7, S. typhimurium, and L.
monocytogenes, respectively, according to the bacteriological analytical
manual (BAM) by USDA. All plates were incubated at 37 °C for 24 to 48 h
before counting colonies characteristic of the pathogens. Experiments
for pathogen inactivation were replicated three times.

2.4 D- and Z-values

For D-value experiments, acid- or non-acid-adapted pathogens were
inoculated into 5 mL tomato juice samples in test tubes, previously

equilibrate to 45, 50, 55, or 60 °C by immersion in a constant-temper-
ature water bath (BW-10G; Jeio Tech, Seoul, Republic of Korea).
Temperature was fixed during treatment, and time was adjusted
separately for each temperature. For the D-value experiment, 0.1 mL of
treated sample was transferred to 9.9 mL sterile 0.2% PW and
enumerated as described in section 2.3. This inactivation experiment
was replicated three times and the number of surviving pathogenswas
plotted on a logarithmic scale as a function of time (min).DT (min) the
time needed to decrease the pathogen population by 90% (1 log) at
temperature T (°C), was calculated by plotting surviving microorgan-
isms against time on semi-log coordinates as follows.

log ( N
N0

) � −
t
DT

(6)

where N0 = initial pathogen population (CFU/mL), N = pathogen
population after treatment (CFU/mL), and t = time (min).

The z-values (°C) were calculated as the negative inverse slope of
the linear regression line for the log D-values over the range of heating
temperatures tested (Figure S2).

2.5 Ohmic heating setup

The system consisted of a function generator (catalog number 33210A;
Agilent Technologies, Palo Alto, CA), a precision power amplifier (cat-
alog number 4510; NF Corp., Yokohama, Japan), a data logger (catalog
number 34970A; Agilent Technologies), two rectangular-typed titanium
electrodes (0.1 cm thickness, 15.0 cm width, and 6.0 cm height), and an
acrylic plastic chamber with inner dimensions (4.2 cm width, 15.2 cm
length, and 6.0 cm height) and thickness of 0.5 cm. The schematic
diagram of system and geometry of heating chamber are described in
the previous study [34]. The electrodes were installed in the ohmic
heating chamber, and the distance between the two electrodes was set
up tobe4cm.Each50mLtomato juice sample, inoculatedwithamixed-
culture cocktail, was subjected to 25 Vrms/cm ohmic heating (1 kHz,
pulse waveform, alternating current (AC), 0.05 duty ratio) for 0, 30, 50,
60, 65, 70, and 75 s considering preliminary experiments. The high
frequency (1 kHz) and pulse waveform were used to prevent electrode
corrosion as reported by previous researcher [28].

2.6 Mathematical model

Simulation for ohmic heating treatmentwas conducted usingCOMSOL
software (Version 4.3, COMSOL Inc., Palo Alto, CA) based on the finite
element method (FEM), which is widely used to solve the problems of
engineering and mathematical models along with BEM and DQM [35].

Table : Material properties for simulation.

Material properties Unit Tomato juicea Titaniumb Acrylic plasticb

Density (ρ) kg/m −: × − × T þ : × − × T þ : ×   

Thermal conductivity (K) W/(m·K) : × − × T þ : × − × T þ : . .
Specific heat (Cp) J/(kg·K) : × − × T þ : × − × T þ : ×   

Electrical conductivity (σ) S/m : × − × T − : , 

aMaterial property equations of tomato juice was calculated based on the composition of tomato juice used in the present study and coefficients
to estimate food properties indicated in Appendices of Singh and Heldman () [].
bImported from COMSOL material library, V. .
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Simulated results were compared with experimental results at points
1, 2, and 3 for validation (Figure 1). Point 1was selectedbecause it is the
geometrical center of the chamber. Point 2 and 3 were selected as edge
and side of chamber, respectively.

2.6.1 Governing equation for electric field: The Laplace equation
defining the electric field in an ohmic heater was given by:

∇ ⋅ (σ(T) ∇ V) � 0 (7)

Boundary and initial conditions for ohmic conductor were given
by:

Electrode with a ground  :  V � 0
Electrode with an electric potential :  V � V0

Electrical insulation at the walls : n(σ(T) ∇ V) � 0

where n is the unit vector perpendicular to the boundary.

2.6.2 Governing equation for heat balance: The governing equation
including heat generation and transfer is defined by:

ρCp
∂Τ
∂t

� ∇ ⋅ (k ∇ Τ) + Q − ρCpu ⋅ ∇T (8)

where u is the velocity (m/s), and Q is the heat source (W/m3) gener-
ated by ohmic heater. The heat sources produced by ohmic heater can
be calculated by the following equation.

Q � σ(T)|∇V|2 (9)

Boundary condition for external natural convection on the surfaces of
chamber is given by:

n ⋅ (k ∇ T) � h(Text − T) (10)

where h is the convective heat transfer coefficient (W/m2·K), and Text is
the external environment temperature (K). The heat transfer coeffi-
cient for natural convection can be changed depending on the
geometrical configuration (vertical or horizontal face). The coefficient
is also the function of the length (area/perimeter, m), internal and
external temperatures, thermal conductivity, and so on. For most
engineeringpurposes, the COMSOL software (v 4.3, CA) provides built-

in functions for the heat transfer coefficient. Thus, the heat transfer
coefficient was automatically calculated by the software with the
initial temperature of 22 °C (external temperature).

2.6.3 Governing equation for incompressible laminar flow: If the flow
condition is in an incompressible state with respect to time and space,
the governing equations using Cartesian coordinates can be described
by the following laminar flow model, which are part of Navier–Stokes
equations for incompressible flow. Boussinesq approximation was
considered, which means that the only affect of density is in the
gravitational term (the buoyancy force).

ρ
∂u
∂t

+ ρ(u ⋅ ∇)u � ∇ ⋅ [− pI + μ( ∇ u + (∇u)tr)] + ρg (11)

ρ ∇ ⋅(u) � 0 (12)

where p is the pressure (Pa), μ is the dynamic viscosity (Pa·s), I is the
identity vector, g is the gravitational acceleration (9.8 m/s2), and su-
perscript tr is the transpose of a matrix.

The dynamic viscosity and density of fluid are changed
depending on the temperature and initial condition of velocity was set
to be zero. The density variation drives the buoyant flow.

2.6.4 Equation for pathogen inactivation: Transport of diluted spe-
cies module in chemical species transport was used to simulate
pathogen inactivation. Initial population of E. coli O157:H7, S.
typhimruium, and L. monocytogeneswere considered as 5.85, 5.46, and
6.04 CFU/mL, respectively, based on the experimental results. Path-
ogenswere considered to be homogenously distributed along the juice
sample. Following first-order reaction equation was assumed to be an
appropriate model to predict the inactivation of foodborne pathogens
based on experimental D-value results;

∂c
∂t

� kTc (13)

where c is the concentration (CFU/mL·m3), and kT is the reaction rate
constant (1/s).

The relationship between the reaction rate constant and the
decimal reduction time is defined as follows:

kT � 2.303
DT

(14)

2.7 Simulation setup

A 3 dimensional (3D) geometry of the ohmic heating chamber created
by AutoCAD 2010 software (Autodesk, Inc., San Rafael, CA) was im-
ported into COMSOL software. The domains were discretized by free
tetrahedral meshes (which was optimized in this study), resulting in
54,034 elements, using the advanced front method (AFM). The do-
mains were discretized by free tetrahedral meshes using AFM to in-
crease convergence rate. The averaged mesh quality (Q) was kept at
0.7224 throughout the domains.

Q � 4
	
3

√
A

h21 + h22 + h23
(15)

whereA is the area of triangle, and h1, h2, and h3 are the side lengths of
the triangle.

Fluid dynamics and heat transfer of solution, and pathogen inac-
tivation during batch type ohmic heating were setup through
the software. The partial differential equations (PDEs) to govern

Figure 1: Dimensions and designation of points 1, 2, and 3 of ohmic
heating chamber.
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the phenomena were simultaneously solved based on the FEM,
and a parallel direct sparse solver (PARDISO), optimized for the numer-
ical simulation and fast, was selected. The simulation was run using a
personal server-level computer (Intel XeonCPUE-mail: X5690@4.00GHz
(2 Processors), 32 GB@1,600 MHz RAM on aWindows 7 64-bit operating
system). Heating and pathogen inactivation rates were identified metic-
ulously at three points inside the chamber (Figure 2). Experimental re-
sults were compared with simulated values at these three points for the
verification of simulation model.

2.8 Statistical analysis

D and z values were analyzed by the analysis of variance procedure of
the Statistical Analysis System (SAS 9.3, SAS Institute, Cary, NC) and
mean values were separated using widely used Tukey’s honestly sig-
nificant difference (HSD) test. Simulated and experimental populations
of pathogens were analyzed by the t-test because just two groups were
compared. Significant differences between experimental and simulated
results were determined at a significance level of p = 0.05.

3 Results and discussion

3.1 Thermal resistance of regular (non-
acid-adapted) pathogens

Thermal resistance of foodborne pathogens at a constant
temperature in tomato juice differed for each pathogen

(Table 2). Specifically, D-values of E. coli O157:H7 were
higher than those of S. typhimurium or L.monocytogenes for
every isothermal temperature investigated in the present
study. These results indicated that E. coli O157:H7 had the
highest thermal resistance to the ohmic heating under the
treatment conditions of our study. Similar results were re-
ported by Mazzotta [27], who investigated the heat resis-
tance ofE. coliO157:H7, S. enterica (serotypes Typhimurium,
Enteritidis, Gaminara, Rubislaw, and Hartford), and
L. monocytogenes in fruit juices, and identified that E. coli
O157:H7 had the highest heat resistance among the inves-
tigated pathogens. For example, D-values at 60 °C of non-
acid-adapted E. coli O157:H7, S. enterica, and L. mono-
cytogenes in orange juice were 1.1 ± 0.35, 0.21 ± 0.10, and
0.43 ± 0.06min, respectively. Gabriel and Nakano [36] also
reported that D-value of E. coli O157:H7 was the highest
followed by L. monocytogenes and S. typhimurium when
pathogens were subjected to 55 °C apple juice. Introducing
heat resistance data in a buffer experiments to the food
processing simulation would result in the significant dif-
ference because the resistances in the buffer and the food
matrix are considerably different due to acidity, nutritional
content, and so on [37]. Moreover, Syamaladevi et al. [38]
reported that water activity (aw) in low-moisture food has
been recognized as the primary factors influencing the
heat resistance of pathogen. Therefore, computational

Figure 2: Simulated velocity (A) and temperature distribution (B) after 45 s ohmic heating treatment (25 V/cm), and concentration of E. coli
O157:H7 (C) after the treatment.

Table : D-values of regular (non-acid-adapted) pathogensa,b.

Bacteriumc D-value (min)

 °C  °C  °C  °C

E . ± .Aa
. ± .Ab

. ± .Ac
. ± .Ac

S . ± .Aa
. ± .Bb

. ± .Ac
. ± .Ac

L . ± .Aa
. ± .Cb

. ± .Ab
. ± .Ab

Mean values ± standard deviation (replicated  times).
a Values in the same column followed by the same uppercase letter are not significantly different (p > .).
b Values in the same row followed by the same lowercase letter are not significantly different for D-values (p > .).
c E: E. coli O:H, S: S. typhimurium, L: L. monocytogenes.
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simulation was conducted by combining physical-based
numerical approaches using COMSOL software with
experimental models of D-values and electrical conduc-
tivity measured and calculated in the present study (Ta-
ble 1). First-order kinetic based on D-valueswas used in this
study, but further study is needed to combining non-log
linear models with physical-based approaches.

3.2 Computational simulation of ohmic
heating with regular (non-acid-
adapted) pathogen

Tomato juice processing by ohmic heatingwith rectangular
heater was analyzed through a mathematical model. Even
though various type of heater can be used for ohmic
heating, rectangular heater has been widely used for batch
type system [16], [21], [25]. Velocity and temperature dis-
tribution of tomato juice, and concentration of E. coli
O157:H7 after 45 s treatment, at which the non-uniformity
was remarkable, were represented to help understanding
the nature of processing (Figure 2). The temperature at the
center of the chamber was relatively higher than other
location because heat losses occurred from the heating
chamber to the outside by natural convection [39]. In the
beginning, the convection caused relatively hot fluids at
the center to rise, and this phenomenon contributed to
upward-moving streamlines at the center of the ohmic
heating chamber (Figure 2A). In this regard, most of the
upper part of tomato juice sample showed a red color
indicating a temperature of around 50 °C while the lower
part of tomato juice displayed a yellow color corresponding
to temperatures around 40 °C after 45 s treatment
(Figure 2B). Marra et al. [1] also reported that more cold
areas were observed at the sample surface in a closed cy-
lindrical ohmic heating cell, and Varghese et al. [40]
indicated that these colder external shells were critical
areas to be monitored. Fryer et al. [41] indicated that for
low-viscosity systems, where fluid viscosity is comparable
to that of water, it is possible to assume that the liquid
temperature is uniform. Even though the viscosity of nor-
mally processed tomato juice is around 13.0 cP [42], the
processing time wasmuch shorter than that in Fryer et al.’s
study, and then the convection inside of the chamber in the
present studywas not enough to ensure heating uniformity
of tomato juice. Because the cold point was observed in the
lower part of the ohmic heating chamber, it is predicted
that some pathogens still can survive in these areas of the
chamber at 45 s (Figure 2C), even though all pathogens
were inactivated elsewhere. Non-uniformity was more se-
vere for larger quantity of samples when different amount

of orange juice samples were subjected to ohmic heating
[16]. In this regard, uniformity of larger quantity of tomato
juice samples should be considered when ohmic heating is
applied in the juice industry.

After executing computational simulation, it is needed
to verify that the developed model values accurately pre-
dict observed values. Heating rate and inactivation of
pathogens by computational simulation were compared
with experimental results for the verification. The heating
rates of simulation were similar to experimental results
within an error range of 4.5 °C at points 1, 2, and 3 (Figure 3).
Heated samples, which has lower density than around,
rose due to buoyancy. This phenomenon would actively
progress as treatment time increase. It is assumed that this
natural convection resulting in temperature difference in-
side the chamber. The modeled heating rates had a more
linear shape than experimental results, which represented
exponential shape. It is well known that temperature in-
crease trend by ohmic heating has exponential shape
because electrical conductivity is proportion to tempera-
ture [22]. Electrical conductivity, also proportion to tem-
perature in the present study, was considered for
modeling. Even though maximum error value at 3 points
was 4.5 °C, that at point 2 and over 45 °C (which contribute
to the pathogen inactivation) was 2.26 °C (Table S1). In this
regard, the simulated inactivation value was similar with
experimental results and it was assumed that validation of
simulation was conducted by comparing the temperature.
In the cases of pathogen inactivation trends, experimental
results were much closer to simulated results at point 2
than at points 1 or 3 (Figure 4). The simulated results at
point 2 were not exactly identical with experimental results
of which were obtained from microbial count of the whole

Figure 3: Comparison of the simulated and experimental
temperatures of ohmic heated tomato juice at points 1, 2, and 3.
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sample. It was not possible to sample the exact portion at
specific position. Therefore, three points were designated
to investigate which point is the most similar with overall
inactivation trend. Moreover, pathogens were assumed to
be stay at the specific point even though they move to the
other point and subject to the other temperature at real
situation. Further study should be conducted considering
the movement of pathogens.

At certain treatment time, more than 5 log CFU/mL
pathogen can exist at point 2 while only less than 1 log
CFU/mL can survive at point 1 or 3. Therefore, tempera-
ture at point which have lower heating rate (point 2 in the
present study) leads the overall microbial inactivation
trend. Moreover, only temperature over than 45 °C
contribute the pathogen inactivation. Considering these
factors, actual error range (at point 2 and over 45 °C) is
within 2.26 °C (Table S1) because lower temperaturewould
not inactivate the pathogen. These results indicate that
the point 2 must be selected as a biological validation
spot. Because heat resistanceswere differed for the type of
pathogen, the times needed to inactivate pathogens by
ohmic heating were different for each pathogen. When
pathogen inactivation at point 2 was simulated, 76.3,
70.9, and 68.3 s would be needed to inactivate E. coli
O157:H7, S. typhimurium, and L. monocytogenes, respec-
tively, to below the detection limit. These simulated
treatment intervals were very similar to experimental re-
sults, which indicated that 75, 70, and 70 s were needed to
inactivate E. coli O157:H7, S. typhimurium, and L. mono-
cytogenes, respectively, to below the detection limit. From
the results above, it was verified that developed simula-
tion model can predict the temperature increase and mi-
crobial inactivation without significant difference with
experimental results. The results are consistent with
previous research investigations reporting that physics-
based modeling can predict the temperature distribution
and microbial inactivation precisely [13, 14].

3.3 Computational simulation of ohmic
heating with acid-adapted pathogen

After verification of the model, it was investigated whether
the developed simulation model can predict the inactiva-
tion of acid-adapted pathogens. Heat resistance of the acid-
adapted pathogens increased compared to non-acid-
adapted pathogens (Tables 2 and 3). D-values increased
considerably at 55 °C and 60 °C for acid-adapted E. coli
O157:H7, whereas for acid-adapted S. typhimurium and
L. monocytogenes, D-values significantly increased be-
tween 45 and 50 °C compared to non-acid-adapted cells.
Acid-adaption increase lethal temperature of pathogens.
Because the lethal temperature of E. coli O157:H7 was
higher than those of S. typhimurium and L. monocytogenes
before acid-adaptation, it seems that the acid-adaptation
affect the D-values of E. coli O157:H7 at higher temperature
than those of S. typhimurium and L. monocytogenes. In this
regard, the z-value of acid-adapted E. coli O157:H7 was
significantly higher (p < 0.05) than that of non-acid-
adapted cells at the range of 45–60 °C (Table 4). On the
other hand, z-values of acid-adapted S. typhimurium and
L. monocytogenes were not significantly different from
(p > 0.05) than those of non-acid-adapted S. typhimurium
and L. monocytogenes, respectively, at the range of
45–60 °C. Mazzotta [27] also reported that D-values of E. coli
O157:H7, S. typhimurium, and L. monocytogenes increased
after acid-adaptation in apple, orange, and white grape
juices, and z-values increased or decreased depending on
the type of pathogen and juice. Altered D-values by acid-
adaptation were adopted to computational simulation to
predict inactivation trend of acid-adapted pathogens by
ohmic heating, and point 2 was used to predict the inacti-
vation trend considering the results of section 3.3 (Table 5).
Acid-adaption did not affect the electrical conductivity of
the tomato juice. Acid-adapted cultures were grown in TSB
adjusted to pH 5 with 1 N HCl, and collected by

Figure 4: Comparison of the simulated and experimental population (log CFU/ml) of E. coli O157:H7 (A), S. Typhimurium (B), and L.
monocytogenes (C) in tomato juice subjected to ohmic heating. Experimental results were represented as the mean ± standard deviation
(n = 3).
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centrifugation, and washed with 0.2% PW. Therefore,
conditions for collated cultures are identical for acid-
adapted and non-acid-adapted pathogens. Further study is
needed using the acid-adapted or acid-shocked pathogens
at more severe conditions (pH 3–4) considering that the pH
of juice products are 3–4. Koutsoumanis et al. [43] reported
that a mild acid shock at pH 5.0, 5.5, or 6.0 resulted in an
increase in the pathogen resistance to acid conditions (pH
3.5) whereas acid shock at pH 4.0, 4.5, and 7.0 had no
significant effect, but the results would be different for the
heat resistance.

Experimental log reductions were higher than
computationally predicted values, which is consistent with
previous studies [44, 45]. Xu et al. [45] reported that
experimental log reductions by radio-frequency pasteuri-
zation of Enterococcus faecium were higher than those of
predicted model, and pointed out that an unavoidable
delay may have occurred removing treated samples from
the processing container. It was postulated that not only
the delay but also the mixing effect during the sampling
stage would contribute to increasing experimental log
reduction. In particular, the delay and/or the mixing effect
would have more significant effect on the inactivation of
acid-adapted pathogens due to the increased resistance
compared to the non-acid-adapted pathogens. Despite
these unavoidable experimental limitations, the differ-
ences between simulated and experimental data were not
significant under any treatment conditions (p > 0.05) when
analyzed by the Satterthwaite t-test considering inequality
of variance. The results indicated that computational
simulation not only reflect the increased heat resistance by
acid-adaptation but also be utilized more extensively by
replacing the heat resistance value (D-value) considering
the environmental conditions of pathogens. Therefore,
computational model can be utilized effectively to predict
the pathogen inactivation trend of which the heat

Table : Altered D-values of pathogens by acid-adaptationa,b.

Bacteriumc D-value (min)

 °C  °C  °C  °C

E . ± .Aa
. ± .Abc

. ± .Abc
. ± .Ac

S . ± .Aa
. ± .ABb

. ± .Bb
. ± .Bb

L . ± .Aa
. ± .Bb

. ± .Bb
. ± .Bb

Mean values ± standard deviation (replicated  times).
a Values in the same column followed by the same uppercase letter are not significantly different (p > .).
b Values in the same row followed by the same lowercase letter are not significantly different for D-values (p > .).
c E: E. coli O:H, S: S. typhimurium, L: L. monocytogenes.

Table : z-values of regular (non-acid-adapted) and acid-adapted
pathogensa,b.

Bacteriumc Regular Acid-adpated

E . ± .Aa
. ± .Ab

S . ± .Aa
. ± .Ba

L . ± .Aa
. ± .Ba

Mean values ± standard deviation (replicated  times).
a Values in the same column followed by the same uppercase letter are
not significantly different (p > .).
b Values in the same row followed by the same lowercase letter are not
significantly different for D-values (p > .).
c E: E. coli O:H, S: S. typhimurium, L: L. monocytogenes.

Table : Simulated and experimental populations (log CFU/mL) of pathogens after acid-adaptation.

Treatment
Time (s)

E. coli O:Hb S. Typhimuriumb L. monocytogenesb

Sima Expa Sima Expa Sima Expa

 .A
. ± .A

.A
. ± .A

.A
. ± .A

 .A
. ± .A

.A
. ± .A

.A
. ± .A

 .A
. ± .A

.A
. ± .A

.A
. ± .A

 .A
. ± .A

.A
. ± .A

.A
. ± .A

 .A
. ± .A

.A
. ± .A

.A
. ± .A

 .A
. ± .A

.A
. ± .A

.A
. ± .A

 .A
. ± .A <.A <.A <.A

. ± .A

a Sim: Simulated results at point , Exp: Experimental results (Mean values ± standard deviation, replicated  times).
b Values in the same row that are followed by the same letter are not significantly different for each pathogen (p > .).
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resistance increased abnormally due to the climate change
and cross-protection.

4 Conclusion

Ohmic heating processing of tomato juice, including the
prediction of acid-adapted pathogen inactivation, was
mathematically analyzed in the present study. Electrical,
thermo-physical properties of materials and thermal
resistance values of pathogens were reflected in the
mathematical modeling. In the simulation, upward-mov-
ing streamlineswere observed at the center of the chamber,
which contributed to the overall temperature distribution
of ohmic heating. Because simulated temperature at the
lower part of the chamber was lower than that of the higher
part, pathogens can survive longer at the bottom or corner
of the treatment chamber than those of higher part. Three
points were designated to understand temperature and
biological states at each location more meticulously.
Verification, comparing simulated values with experi-
mental results, was accomplished at the three points. Sig-
nificant differences were not observed between
experimental acid-adapted pathogen reductions and
simulated values (p > 0.05), which means the errors are
within the range each other. Limited points were simulated
and validated in this study, but this is the first attempt to
predict the acid-adapted pathogen inactivation by com-
puter simulation. Further study is needed to simulated
pathogen inactivation adapted to various environmental
conditions. From the results in this study, it is recom-
mended to utilize the mathematical model approach to
reduce time and labor optimizing processing conditions.
After that, confirmation experiment is needed to ensure
microbiological safe. This model could be helpful for juice
processors desiring 5-log reductions of target organisms
because processing conditions should be adjusted for the
environmental conditions affecting heat resistance of
pathogens.
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